Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695862

RESUMO

Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos Knockout , Contração Muscular , Proteínas do Tecido Nervoso , Sarcômeros , Septinas , Animais , Septinas/metabolismo , Septinas/genética , Sarcômeros/metabolismo , Camundongos , Contração Muscular/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia
2.
Curr Protoc ; 4(3): e1014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506436

RESUMO

This article presents a practical guide to mass spectrometry-based data-independent acquisition and label-free quantification for proteomics analysis applied to cerebrospinal fluid, offering a robust and scalable approach to probing the proteomic composition of the central nervous system. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Cerebrospinal fluid sample collection and preparation for mass spectrometry analysis Basic Protocol 2: Mass spectrometry sample analysis with data-independent acquisition Support Protocol: Data-dependent mass spectrometry and spectral library construction Basic Protocol 3: Analysis of mass spectrometry data.


Assuntos
Proteoma , Proteômica , Humanos , Proteômica/métodos , Proteoma/análise , Espectrometria de Massas/métodos , Proteínas do Líquido Cefalorraquidiano/química
3.
Cells ; 12(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37759504

RESUMO

Myocardial ischemia/reperfusion (I/R) elicits an acute inflammatory response involving complement factors. Recently, we reported that myocardial necrosis was decreased in complement C3-/- mice after heart I/R. The current study used the same heart model to test the effect of C3 on myocardial apoptosis and investigated if C3 regulation of apoptosis occurred in human cardiomyocytes. Comparative proteomics analyses found that cytochrome c was present in the myocardial C3 complex of WT mice following I/R. Incubation of exogenous human C3 reduced apoptosis in a cell culture system of human cardiomyocytes that did not inherently express C3. In addition, human C3 inhibited the intrinsic apoptosis pathway in a cell-free apoptosis system. Finally, human pro-C3 was found to bind with an apoptotic factor, pro-caspase 3, in a cell-free system. Thus, we present firsthand evidence showing that C3 readily reduces myocardial apoptosis via interaction with the intrinsic apoptotic pathway.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Camundongos , Humanos , Animais , Complemento C3/metabolismo , Complemento C3/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Apoptose , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia/metabolismo
4.
Nat Commun ; 14(1): 4271, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460553

RESUMO

Multiple myeloma bone disease is characterized by the development of osteolytic bone lesions. Recent work identified matrix metalloproteinase 13 as a myeloma-derived fusogen that induces osteoclast activation independent of its proteolytic activity. We now identify programmed death-1 homolog, PD-1H, as the bona fide MMP-13 receptor on osteoclasts. Silencing PD-1H or using Pd-1h-/- bone marrow cells abrogates the MMP-13-enhanced osteoclast fusion and bone-resorptive activity. Further, PD-1H interacts with the actin cytoskeleton and plays a necessary role in supporting c-Src activation and sealing zone formation. The critical role of PD-1H in myeloma lytic bone lesions was confirmed using a Pd-1h-/- myeloma bone disease mouse model wherein myeloma cells injected into Pd-1h-/-Rag2-/- results in attenuated bone destruction. Our findings identify a role of PD-1H in bone biology independent of its known immunoregulatory functions and suggest that targeting the MMP-13/PD-1H axis may represent a potential approach for the treatment of myeloma associated osteolysis.


Assuntos
Mieloma Múltiplo , Osteólise , Animais , Camundongos , Osso e Ossos/patologia , Proteínas de Transporte , Metaloproteinase 13 da Matriz , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Osteoclastos/patologia , Osteólise/genética , Osteólise/patologia
5.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37461567

RESUMO

Here, we investigated mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development including asymmetric cell division, cell-type specification and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (NumbL) in mouse myofibers caused weakness, disorganization of sarcomeres and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, NumbL knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb, that Septin 7 is a potential Numb binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.

6.
J Heart Lung Transplant ; 42(1): 64-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400676

RESUMO

BACKGROUND: Continuous-flow left ventricular assist devices commonly lead to aortic regurgitation, which results in decreased pump efficiency and worsening heart failure. We hypothesized that non-physiological wall shear stress and oscillatory shear index alter the abundance of structural proteins in aortic valves of left ventricular assist device (LVAD) patients. METHODS: Doppler images of aortic valves of patients undergoing heart transplants were obtained. Eight patients had been supported with LVADs, whereas 10 were not. Aortic valve tissue was collected and protein levels were analyzed using mass spectrometry. Echocardiographic images were analyzed and wall shear stress and oscillatory shear index were calculated. The relationship between normalized levels of individual proteins and in vivo echocardiographic measurements was evaluated. RESULTS: Of the 57 proteins of interest, there was a strong negative correlation between levels of 15 proteins and the wall shear stress (R < -0.500, p ≤ 0.05), and a moderate negative correlation between 16 proteins and wall shear stress (R -0.500 to -0.300, p ≤ 0.05). Gene ontology analysis demonstrated clusters of proteins involved in cellular structure. Proteins negatively correlated with WSS included those with cytoskeletal, actin/myosin, cell-cell junction and extracellular functions. C: In aortic valve tissue, 31 proteins were identified involved in cellular structure and extracellular junctions with a negative correlation between their levels and wall shear stress. These findings suggest an association between the forces acting on the aortic valve (AV) and leaflet protein abundance, and may form a mechanical basis for the increased risk of aortic leaflet degeneration in LVAD patients.


Assuntos
Insuficiência da Valva Aórtica , Transplante de Coração , Coração Auxiliar , Humanos , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Coração Auxiliar/efeitos adversos , Insuficiência da Valva Aórtica/etiologia , Aorta , Transplante de Coração/efeitos adversos
7.
J Trace Elem Med Biol ; 73: 127027, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35868166

RESUMO

BACKGROUND AND AIM: Islet amyloid polypeptide/amylin deposition in the form of amyloid plaques is a common pathological feature observed in the pancreatic tissue of those with Type II Diabetes Mellitus. Its propensity to form amyloid fibrils and the resultant toxicity of this peptide in vivo is influenced by both the concentration and species of metal present in situ. Herein, we examine the influence of Al (III) and Cu (II), applied at equimolar and supra-stoichiometric concentrations on the initial aggregatory behaviour of amylin under near physiological conditions. METHODS: Dynamic light scattering measurements, which monitored the aggregation status and size of the peptide in real time, were performed during the early lag-phase of fibrillogenesis (T ≤ 30 min) in the absence or presence of metal ions. RESULTS: Islet amyloid polypeptide (10 µM) rapidly aggregated when introduced into a physiological medium favouring the formation of large, agglomerated structures (> 1000 nm) after 30 min incubation. Neither the addition of equimolar or excess metals significantly influenced the size of the peptide when intensity distributions were consulted; however, number distributions indicated that both Al (III) and Cu (II) may have had, an albeit temporary, stabilising influence upon the conformations present within solution. CONCLUSION: These results infer that small oligomeric species are likely transient entities that are rapidly incorporated into large agglomerates during the very initial stages of fibrillogenesis. While both Al (III) and Cu (II) both inhibited agglomeration to some degree, their stabilising affect upon peptide aggregation was limited over the juncture of the experiments performed herein; hence, it is difficult to say whether these metal ions play a role in enhancing the toxicity of these peptides through influencing their aggregation in the short-term.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Alumínio/química , Cobre/química , Humanos , Íons , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química
8.
Front Immunol ; 13: 814627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401570

RESUMO

Plasmacytoid dendritic cells [pDCs] represent a rare innate immune subset uniquely endowed with the capacity to produce substantial amounts of type-I interferons. This function of pDCs is critical for effective antiviral defenses and has been implicated in autoimmunity. While IFN-I and select cytokines have been recognized as pDC secreted products, a comprehensive agnostic profiling of the pDC secretome in response to a physiologic stimulus has not been reported. We applied LC-MS/MS to catalogue the repertoire of proteins secreted by pDCs in the unperturbed condition and in response to challenge with influenza H1N1. We report the identification of a baseline pDC secretome, and the repertoire of virus-induced proteins including most type-I interferons, various cytokines, chemokines and granzyme B. Additionally, using single-cell RNA-seq [scRNA-seq], we perform multidimensional analyses of pDC transcriptional diversity immediately ex vivo and following stimulation. Our data evidence preexisting pDC heterogeneity, with subsequent highly specialized roles within the pDC population upon stimulation ranging from dedicated cytokine super-producers to cells with APC-like traits. Dynamic expression of transcription factors and surface markers characterize subclusters within activated pDCs. Integrating the proteomic and transcriptomic datasets confirms the pDC-subcluster origin of the proteins identified in the secretome. Our findings represent the most comprehensive molecular characterization of primary human pDCs at baseline, and in response to influenza virus, reported to date.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Interferon Tipo I , Cromatografia Líquida , Citocinas/metabolismo , Células Dendríticas , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Interferon Tipo I/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Transcriptoma
9.
Reprod Sci ; 29(5): 1542-1559, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35266109

RESUMO

Appropriate timing of cervical remodeling (CR) is key to normal term parturition. To date, mechanisms behind normal and abnormal (premature or delayed) CR remain unclear. Recent studies show regional differences exist in human cervical tissue structure. While the entire cervix contains extracellular matrix (ECM), the internal os is highly cellular containing 50-60% cervical smooth muscle (CSM). The external os contains 10-20% CSM. Previously, we reported ECM rigidity and different ECM proteins influence CSM cell function, highlighting the importance of understanding not only how cervical cells orchestrate cervical ECM remodeling in pregnancy, but also how changes in specific ECM proteins can influence resident cellular function. To understand this dynamic process, we utilized a systematic proteomic approach to understand which soluble ECM and cellular proteins exist in the different regions of the human cervix and how the proteomic profiles change from the non-pregnant (NP) to the pregnant (PG) state. We found the human cervix proteome contains at least 4548 proteins and establish the types and relative abundance of cellular and soluble matrisome proteins found in the NP and PG human cervix. Further, we report the relative abundance of proteins involved with elastic fiber formation and ECM organization/degradation were significantly increased while proteins involved in RNA polymerase I/promoter opening, DNA methylation, senescence, immune system, and compliment activation were decreased in the PG compared to NP cervix. These findings establish an initial platform from which we can further comprehend how changes in the human cervix proteome results in normal and abnormal CR.


Assuntos
Colo do Útero , Nascimento Prematuro , Colo do Útero/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Gravidez , Nascimento Prematuro/metabolismo , Proteoma/metabolismo , Proteômica
10.
J Mol Cell Cardiol ; 166: 137-151, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219725

RESUMO

Ischemic and non-ischemic cardiomyopathies have distinct etiologies and underlying disease mechanisms, which require in-depth investigation for improved therapeutic interventions. The goal of this study was to use clinically obtained myocardium from healthy and heart failure patients, and characterize the changes in extracellular matrix (ECM) in ischemic and non-ischemic failing hearts, with and without mechanical unloading. Using tissue engineering methodologies, we also investigated how diseased human ECM, in the absence of systemic factors, can influence cardiomyocyte function. Heart tissues from heart failure patients with ischemic and non-ischemic cardiomyopathy were compared to explore differential disease phenotypes and reverse remodeling potential of left ventricular assisted device (LVAD) support at transcriptomic, proteomic and structural levels. The collected data demonstrated that the differential ECM compositions recapitulated the disease microenvironment and induced cardiomyocytes to undergo disease-like functional alterations. In addition, our study also revealed molecular profiles of non-ischemic and ischemic heart failure patients and explored the underlying mechanisms of etiology-specific impact on clinical outcome of LVAD support and tendency towards reverse remodeling.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Matriz Extracelular , Coração Auxiliar/efeitos adversos , Humanos , Miocárdio/química , Proteômica
11.
Nat Commun ; 12(1): 4613, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326342

RESUMO

R-bodies are long, extendable protein polymers formed in the cytoplasm of some bacteria; they are best known for their role in killing of paramecia by bacterial endosymbionts. Pseudomonas aeruginosa PA14, an opportunistic pathogen of diverse hosts, contains genes (referred to as the reb cluster) with potential to confer production of R-bodies and that have been implicated in virulence. Here, we show that products of the PA14 reb cluster associate with R-bodies and control stochastic expression of R-body structural genes. PA14 expresses reb genes during colonization of plant and nematode hosts, and R-body production is required for full virulence in nematodes. Analyses of nematode ribosome content and immune response indicate that P. aeruginosa R-bodies act via a mechanism involving ribosome cleavage and translational inhibition. Our observations provide insight into the biology of R-body production and its consequences during P. aeruginosa infection.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans , Filogenia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética , Virulência , Fatores de Virulência/genética
12.
J Proteome Res ; 20(8): 4001-4009, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34291951

RESUMO

Glucocorticoids are the first-line treatment for sensorineural hearing loss, but little is known about the mechanism of their protective effect or the impact of route of administration. The recent development of hollow microneedles enables safe and reliable sampling of perilymph for proteomic analysis. Using these microneedles, we investigate the effect of intratympanic (IT) versus intraperitoneal (IP) dexamethasone administration on guinea pig perilymph proteome. Guinea pigs were treated with IT dexamethasone (n = 6), IP dexamethasone (n = 8), or untreated for control (n = 8) 6 h prior to aspiration. The round window membrane (RWM) was accessed via a postauricular approach, and hollow microneedles were used to perforate the RWM and aspirate 1 µL of perilymph. Perilymph samples were analyzed by liquid chromatography-mass spectrometry-based label-free quantitative proteomics. Mass spectrometry raw data files have been deposited in an international public repository (MassIVE proteomics repository at https://massive.ucsd.edu/) under data set # MSV000086887. In the 22 samples of perilymph analyzed, 632 proteins were detected, including the inner ear protein cochlin, a perilymph marker. Of these, 14 proteins were modulated by IP, and three proteins were modulated by IT dexamethasone. In both IP and IT dexamethasone groups, VGF nerve growth factor inducible was significantly upregulated compared to control. The remaining adjusted proteins modulate neurons, inflammation, or protein synthesis. Proteome analysis facilitated by the use of hollow microneedles shows that route of dexamethasone administration impacts changes seen in perilymph proteome. Compared to IT administration, the IP route was associated with greater changes in protein expression, including proteins involved in neuroprotection, inflammatory pathway, and protein synthesis. Our findings show that microneedles can mediate safe and effective intracochlear sampling and hold promise for inner ear diagnostics.


Assuntos
Dexametasona/administração & dosagem , Glucocorticoides/administração & dosagem , Perilinfa , Proteoma , Animais , Cobaias , Injeção Intratimpânica , Proteômica
13.
Hear Res ; 400: 108141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33307286

RESUMO

BACKGROUND: Inner ear diagnostics is limited by the inability to atraumatically obtain samples of inner ear fluid. The round window membrane (RWM) is an attractive portal for accessing perilymph samples as it has been shown to heal within one week after the introduction of microperforations. A 1 µL volume of perilymph is adequate for proteome analysis, yet the total volume of perilymph within the scala tympani of the guinea pig is limited to less than 5 µL. This study investigates the safety and reliability of a novel hollow microneedle device to aspirate perilymph samples adequate for proteomic analysis. METHODS: The guinea pig RWM was accessed via a postauricular surgical approach. 3D-printed hollow microneedles with an outer diameter of 100 µm and an inner diameter of 35 µm were used to perforate the RWM and aspirate 1 µL of perilymph. Two perilymph samples were analyzed by liquid chromatography-mass spectrometry-based quantitative proteomics as part of a preliminary study. Hearing was assessed before and after aspiration using compound action potential (CAP) and distortion product otoacoustic emissions (DPOAE). RWMs were harvested 72 h after aspiration and evaluated for healing using confocal microscopy. RESULTS: There was no permanent damage to hearing at 72 h after perforation as assessed by CAP (n = 7) and DPOAE (n = 8), and all perforations healed completely within 72 h (n = 8). In the two samples of perilymph analyzed, 620 proteins were detected, including the inner ear protein cochlin, widely recognized as a perilymph marker. CONCLUSION: Hollow microneedles can facilitate aspiration of perilymph across the RWM at a quality and volume adequate for proteomic analysis without causing permanent anatomic or physiologic dysfunction. Microneedles can mediate safe and effective intracochlear sampling and show great promise for inner ear diagnostics.


Assuntos
Perilinfa , Animais , Cobaias , Impressão Tridimensional , Proteômica , Reprodutibilidade dos Testes , Janela da Cóclea
14.
ACS Cent Sci ; 6(12): 2301-2310, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33376791

RESUMO

While eukaryotic cells have a myriad of membrane-bound organelles enabling the isolation of different chemical environments, prokaryotic cells lack these defined reaction vessels. Biomolecular condensates-organelles that lack a membrane-provide a strategy for cellular organization without a physical barrier while allowing for the dynamic, responsive organization of the cell. It is well established that intrinsically disordered protein domains drive condensate formation via liquid-liquid phase separation; however, the role of globular protein domains on intracellular phase separation remains poorly understood. We hypothesized that the overall charge of globular proteins would dictate the formation and concentration of condensates and systematically probed this hypothesis with supercharged proteins and nucleic acids in E. coli. Within this study, we demonstrated that condensates form via electrostatic interactions between engineered proteins and RNA and that these condensates are dynamic and only enrich specific nucleic acid and protein components. Herein, we propose a simple model for the phase separation based on protein charge that can be used to predict intracellular condensate formation. With these guidelines, we have paved the way to designer functional synthetic membraneless organelles with tunable control over globular protein function.

15.
Proteomics ; 20(10): e2000006, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32336023

RESUMO

Ferroptosis is a form of regulated, non-apoptotic cell death characterized by excessive lipid peroxidation that can be triggered by inhibition of the cystine-glutamate antiporter, system Xc- . Sorafenib, an FDA-approved multi-kinase inhibitor drug that is used for treatment of hepatocellular carcinoma (HCC), has been shown to induce ferroptosis. Protein phosphorylation changes upon sorafenib treatment have been previously reported in patient studies and in cell culture. However, early phosphorylation changes during induction of ferroptosis are not reported. This work highlights these changes through a time course from 7 to 60 min of sorafenib treatment in human (SKHep1) HCC cells. A total of 6170 unique phosphosites from 2381 phosphoproteins are quantified, and phosphorylation changes occur after as little as 30 min of sorafenib treatment. By 60 min, notable changes included phosphosites significantly changing on p53 (P04637), CAD protein (P27708), and proteins important for iron homeostasis, such as heavy chain ferritin (FTH1; P02794), heme oxygenase 1 (HMOX1; P09601), and PCBP1 (Q15365). Additional sites on proteins in key regulatory pathways are identified, including sites in ferroptosis-related proteins, indicating the likely involvement of phospho-regulated signaling during ferroptosis induction.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Sorafenibe/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Ferritinas/genética , Ferroptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Homeostase/efeitos dos fármacos , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Oxirredutases/genética , Fosfoproteínas/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação a RNA/genética , Transdução de Sinais/efeitos dos fármacos
16.
Adv Exp Med Biol ; 1140: 317-326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347056

RESUMO

Lipids play significant roles in biological system, and the study of lipid metabolisms may provide a new insight into the diagnosis and pathophysiology of diseases. Recent developments in high-resolution mass spectrometry techniques combined with high-performance chromatographic methods provide deep insight into lipid analysis. Addition of ion mobility mass spectrometry orthogonal to LC-MS analysis workflow enhances separation of complex lipids, improve isomers resolution, and intensify confidence in lipid identification and characterization. In this chapter, we describe the principle of travelling wave ion mobility mass spectrometry (TWIMS) and its applications in untargeted LC-MS analysis for characterizing the structural diversity and complexity of lipid species in biological samples.


Assuntos
Cromatografia Líquida , Lipídeos/análise , Espectrometria de Massas , Metabolismo dos Lipídeos , Fluxo de Trabalho
17.
Cell Chem Biol ; 26(5): 623-633.e9, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30799221

RESUMO

Ferroptosis is a form of regulated cell death that can be induced by inhibition of the cystine-glutamate antiporter, system xc-. Among the existing system xc- inhibitors, imidazole ketone erastin (IKE) is a potent, metabolically stable inhibitor of system xc- and inducer of ferroptosis potentially suitable for in vivo applications. We investigated the pharmacokinetic and pharmacodynamic features of IKE in a diffuse large B cell lymphoma (DLBCL) xenograft model and demonstrated that IKE exerted an antitumor effect by inhibiting system xc-, leading to glutathione depletion, lipid peroxidation, and the induction of ferroptosis biomarkers both in vitro and in vivo. Using untargeted lipidomics and qPCR, we identified distinct features of lipid metabolism in IKE-induced ferroptosis. In addition, biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) nanoparticles were employed to aid in IKE delivery and exhibited reduced toxicity compared with free IKE in a DLBCL xenograft model.


Assuntos
Antineoplásicos/farmacologia , Ferroptose/efeitos dos fármacos , Imidazóis/farmacologia , Cetonas/farmacologia , Piperazinas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Portadores de Fármacos/química , Feminino , Meia-Vida , Humanos , Imidazóis/química , Imidazóis/uso terapêutico , Cetonas/química , Cetonas/uso terapêutico , Metabolismo dos Lipídeos/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanopartículas/química , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Polietilenoglicóis/química , Poliglactina 910/química
18.
J Immunol Regen Med ; 1: 45-56, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30364570

RESUMO

The immunosuppressive capacity of human mesenchymal stromal cells (MSCs) renders them promising candidates for treating diverse immune disorders. However, after hundreds of clinical trials, there are still no MSC therapies approved in the United States. MSCs require specific cues to adopt their immunosuppressive phenotype, and yet most clinical trials use cells expanded in basic culture medium and growth conditions. We propose that priming MSCs prior to administration will improve their therapeutic efficacy. Interferon-gamma (IFN-γ) priming are cues common to situations of immune escape that have individually shown promise as MSC priming cues but have not been systematically compared. Using mixed lymphocyte reactions, we show that priming MSCs with either cue alone improves T-cell inhibition. However, combining the two cues results in additive effects and markedly enhances the immunosuppressive phenotype of MSCs. We demonstrate that IFN-γ induces expression of numerous immunosuppressive proteins (IDO, PD-L1, HLA-E, HLA-G), whereas hypoxia switches MSCs to glycolysis, causing rapid glucose consumption and production of T-cell inhibitory lactate levels. Dual IFN-γ/hypoxia primed MSCs display both attributes and have even higher induction of immunosuppressive proteins over IFN-γ priming alone (IDO and HLA-G), which may reflect another benefit of metabolic reconfiguration.

19.
Aging Cell ; 17(4): e12710, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29730901

RESUMO

High-temperature requirement protein A1 (HTRA1) is a serine protease secreted by a number of tissues including retinal pigment epithelium (RPE). A promoter variant of the gene encoding HTRA1 is part of a mutant allele that causes increased HTRA1 expression and contributed to age-related macular degeneration (AMD) in genomewide association studies. AMD is characterized by pathological development of drusen, extracellular deposits of proteins and lipids on the basal side of RPE. The molecular pathogenesis of AMD is not well understood, and understanding dysregulation of the extracellular matrix may be key. We assess the high-risk genotype at 10q26 by proteomic comparison of protein levels of RPE cells with and without the mutation. We show HTRA1 protein level is increased in high-risk RPE cells along with several extracellular matrix proteins, including known HTRA1 cleavage targets LTBP-1 and clusterin. In addition, two novel targets of HTRA1 have been identified: EFEMP1, an extracellular matrix protein mutated in Doyne honeycomb retinal dystrophy, a genetic eye disease similar to AMD, and thrombospondin 1 (TSP1), an inhibitor of angiogenesis. Our data support the role of RPE extracellular deposition with potential effects in compromised barrier to neovascularization in exudative AMD.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Degeneração Macular/metabolismo , Células Cultivadas , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Degeneração Macular/genética , Epitélio Pigmentado da Retina/metabolismo
20.
Biomaterials ; 167: 226-234, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29574308

RESUMO

Over the past 15 years, mesenchymal stem cells (MSCs) have been assessed for their capacity to suppress inflammation and promote tissue repair. Regardless of whether the cells are primed (exposed to instructive cues) before administration, their phenotype will respond to environmental signals present in the pathophysiological setting being treated. Since hypoxia and inflammation coexist in the settings of acute injury and chronic disease we sought to explore how the proteome and metabolome of MSCs changes when cells were exposed to 48 h of 1% oxygen, interferon gamma (IFN-γ), or both cues together. We specifically focused on changes in cell metabolism, immune modulation, extracellular matrix secretion and modification, and survival capacity. IFN-γ promoted expression of anti-pathogenic proteins and induced MSCs to limit inflammation and fibrosis while promoting their own survival. Hypoxia instead led to cell adaptation to low oxygen, including upregulation of proteins involved in anaerobic metabolism, autophagy, angiogenesis, and cell migration. While dual priming resulted in additive effects, we also found many instances of synergy. These data lend insight to how MSCs may behave after administration to a patient and suggest how priming cells beforehand could improve their therapeutic capacity.


Assuntos
Hipóxia/imunologia , Interferon gama/imunologia , Células-Tronco Mesenquimais/imunologia , Metaboloma , Proteoma/imunologia , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Hipóxia/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...